Operator – Ash Handling

Question Bank

Section I Theory- 100 MCQ

1. Per-capita annual power consumption in India in 2017 is
 a. 734 unit
 b. 1075 units
 c. 1750 units
 d. 2009 units

2. All India thermal Installed Capacity as on 31.03.2017 is
 a. 86 % of total installed capacity
 b. 46 % of total installed capacity
 c. 68 % of total installed capacity
 d. 80 % of total installed capacity

3. Primary Transmission of Power is
 a. 66/132 kV
 b. 11/22 kV
 c. 132/220/400/765 kV
 d. 11/0.415 V

4. In a gas based combined cycle power plant, waste heat recovery boilers
 a. Produce natural gas to run gas turbine
 b. Produce steam from exhaust gases from gas turbine
 c. Produce steam from natural gas
 d. Produce hot gases to run gas turbine

5. India’s installed utility-scale hydro electric capacity as on 31st march, 2017 was
 a. 38 % of the total installed capacity
 b. 28 % of the total installed capacity
 c. 18 % of the total installed capacity
 d. 08 % of the total installed capacity

6. In a solar power plant sunlight can be converted to electricity
 a. Directly by using Photovoltaics (PV) cells
 b. Indirectly by using concentrated solar power (CSP)
 c. By any of the above two systems

7. Fly ash can be used in cement industry (True/False)

8. Dry fly ash is conveyed from plant area to main loading silo
 a. By conveyor belts
 b. By trucks
 c. By pressure conveying pneumatically through pipes
 d. By vacuum conveying pneumatically through pipes
9. Submerged Scraper Chain Conveyor System used to remove bottom ash generated in furnace is run (continuously/intermittently)

10. The purpose of ash slurry transfer/transportation pumps is
 a. to transfer bottom ash slurry from bottom ash hopper to main ash slurry sump
 b. to transfer bottom ash slurry from main ash slurry sump to ash dyke
 c. to transfer bottom ash slurry from Bottom Ash (BA) Slurry Sump to main ash slurry sump
 d. to transfer bottom ash slurry from clinker grinder to main ash slurry sump

11. Purpose of clinker grinders is to reduce the size of falling ash particles to (-) 25 mm size (True/False)

12. For collection of fly ash an ESP (Electro Static Precipitator) of a 500 MW unit may contain about
 a. 10 Nos hoppers
 b. 4 Nos hoppers
 c. 160 Nos. hoppers
 d. 60 Nos hoppers

13. For conveying dry fly ash for long distances any of the two systems, vacuum or pressure ash conveying systems can be used (True/False)

14. Bag filters located at top of a buffer hopper in a vacuum conveying system help in
 a. Separating coarse fly ash from fine fly ash
 b. Filling the filtered fly ash in bags
 c. Separating fly ash from conveying air, which falls in buffer hopper
 d. To clean the purging air for pulse jet system

15. The equipment/system which works both under vacuum as well as pressure ash conveying systems is
 a. Vacuum Pump and cylinder assembly
 b. Airlock Tank
 c. Vacuum conveying pipeline
 d. Buffer Hopper

16. The purpose of pulse jet system in case of a vacuum ash conveying system is to
 a. Assist free flow of fly ash downwards from buffer hopper
 b. To dislodge the fly ash sticking to filter bags by giving shocks to them through air jets
 c. To assist free flow of fly ash inside ash conveying lines
 d. To keep dump gates clean

17. In case of a vacuum ash conveying system, at any time both the activities of FILLING and UNLOADING of ash can be performed simultaneously in an air lock tank (True/False)

18. During wet collection of fly ash in case of a vacuum ash conveying system, fly ash coming from ESP hoppers is diverted to wetting head, collector tank and air washer unit (True/False)

19. In the case of a pressure dry ash conveying system, fly ash from ESP hoppers is collected in PD pumps by gravity (True/False)

20. The purpose of Hydromix Dust Conditioner is to
 a. Transfer fly ash from silo to closed tankers(bulkers) in dry form
 b. Transfer fly ash from silo to open truck after mixing fly ash with a small percentage of water in order to avoid fugitive dust emission
 c. Transfer of fly ash from silo to ash slurry sump in wet form
d. Transfer of fly ash from silo to ash dyke in the form of slurry

21. Bottom Ash Hopper Isolating Gate is used to isolate Scraper Conveyor from Furnace and Bottom Ash Hopper (True/False)

22. Feed Gate valve (in the case of jet bottom ash system) is always kept open during combustion of coal in furnace (True/False)

23. Water is continuously overflown from the trough of the scraper conveyor for safety reasons in order to keep the temperature of trough
 a. Between 30-40° C
 b. Below 60° C
 c. Between 70-80° C
 d. Below 90° C

24. In order to prevent erosion of impellers of HP/LP pumps, ash particles in ash water should be
 a. Below 1 ppm (particles per million)
 b. Below 10 ppm (particles per million)
 c. Below 100 ppm (particles per million)
 d. Below 1000 ppm (particles per million)

25. The discharge pressure of HP pumps used for jet deashing system of bottom ash is
 a. Around 1 kg/cm2
 b. Around 2.3 kg/cm2
 c. Around 10 kg/cm2
 d. Around 16 kg/cm2

26. LP water pumps cater to the requirement of
 a. Ash slurry sump make up & refractory cooling supply
 b. Ring header for seal trough makeup / flushing and Bottom ash hopper/ scraper conveyor trough makeup / filling
 c. Make up to overflow settling bin and Scraper chain conveyor trough make-up water
 d. All the above

27. For bottom ash trench jetting purpose (HP/LP) water is used

28. While lining up a Ash water Pump to start which of the following pre-conditions is not correct
 a. Ash Water Tank (AWT) level is normal
 b. Suction valve is opened and pump is vented properly
 c. Discharge valve is fully open
 d. Emergency Push Button (EPB) is released

29. Which of the following through condition of vacuum conveying path in wet mode is not correct
 a. Wetting head and air washer water pressure is normal
 b. Air washer discharge valve is open
 c. Bag filter discharge valve in dry mode is open
 d. Corresponding vacuum breaker is close

30. In a vacuum ash conveying system pneumatic operated MHV (material handling valve) is
 a. Installed below buffer hopper
 b. Installed at the end of vacuum conveying pipeline
 c. Installed below ESP hopper
 d. Installed before vacuum pump
31. In the case of a vacuum ash conveying system, if the vacuum goes high value of VS3, this indicates that
 a. There is no fly ash flowing in the ash conveying pipeline
 b. There is fly ash flowing in the ash conveying pipeline, however, more ash can be allowed to fall in the ash conveying pipeline
 c. There is fly ash flowing in the ash conveying pipeline and no more ash should be allowed to fall in the ash conveying pipeline
 d. There is fly ash in the ash conveying pipeline, which is not able to flow in the ash conveying pipeline

32. Fly ash hoppers of ESP (Electro Static Precipitators) are designed to store fly ash
 a. Upto 2 hours generation
 b. Upto 4 hours generation
 c. Upto 8 hours generation
 d. Upto 24 hours generation

33. When compressed air pressure of an Instrument Air Compressor (IAC) reaches a high pre-set value, IAC gets UNLOADED, meaning
 a. Both IAC and its motor stop for some time thus stopping further air delivery from IAC into the system stops
 b. Both IAC and its motor keep running but further air delivery from IAC into the system stops
 c. IAC stops running but its motor keeps running thus stopping further air delivery into the system
 d. Both IAC and its motor keep running and air is released into the atmosphere

34. Dew point of Instrument Air should be
 a. (-) 20° C
 b. (-) 40° C
 c. (-) 60° C
 d. 40° C

35. Hot fluidizing air is provided on ESP hoppers during evacuation in order to
 a. Heat the ash inside the hopper so as to promote flow of dry ash from ESP hoppers
 b. Aid fluidizing effect to fly ash so as to promote flow of dry ash from ESP hoppers
 c. Increase pressure inside the hoppers so as to promote flow of dry ash from ESP hoppers
 d. To prevent condensation of moisture in fly ash so as to promote flow of dry ash from ESP hoppers

36. Function of Silo Vent Fans is
 a. To provide ventilation in the silo to maintain low temperature
 b. To help in venting out the air which has brought fly ash from buffer hopper/intermediate hoper upto silo
 c. To prevent settling down of ash particles on the walls of the silo
 d. To help in venting out the air released during filling ash in closed tankers (bulkers)

37. Fluid coupling is provided between motor and first ash slurry disposal pump in a series only (True/False)

38. If in an ash slurry disposal series, there are four pumps each of 600 m3/hr capacity and developing 4 kg/cm2 pressure
a. Total slurry disposal shall be 600 m³/hr at a pressure of 4 kg/cm²
b. Total slurry disposal shall be 2400 m³/hr at a pressure of 4 kg/cm²
c. Total slurry disposal shall be 600 m³/hr at a pressure of 16 kg/cm²
d. Total slurry disposal shall be 2400 m³/hr at a pressure of 16 kg/cm²

39. In case the pressure of ash slurry disposal series is at rated value but motor current reduces this may be due to
 a. Motor not taking load
 b. An indication of pipeline getting choked
 c. Ash slurry getting leaked from the pipeline
 d. Low level of ash slurry in the ash slurry sump

40. Intermittent Type Bottom Deashing system is designed to clean both bottom ash and economiser ash collected in 8 hours of each unit in
 a. about 15-30 minute
 b. about 30-45 minute
 c. about 45-60 minute
 d. about 90-120 minute

41. In a 2 x 500 MW station having common ash handling system, Intermittent Type Bottom Deashing systems of both the units can be run simultaneously (True/False)

42. Before starting a clinker grinder pressure of its seal water should be
 a. More than 4 kg/cm²
 b. More than 8 kg/cm²
 c. Around 5 kg/cm²
 d. Around 0.4 kg/cm²

43. If a clinker grinder, after being given START command, does not rotate, then possible reason could be
 a. Low oil level in its fluid coupling
 b. Its rotor being in choked condition with ash/clinker
 c. Power supply being OFF
 d. Any one of the above

44. When jetting system of intermittent type bottom deashing system starts functioning, discharge pressure increases and line also becomes hot (True/False)
45. When jetting system of intermittent type bottom deashing system empties the hopper, discharge pressure comes down and line also becomes less hot (True/False)
46. Once bottom ash hopper in the case of a jetting system of intermittent type bottom deashing system has been emptied, clinker grinders and line flushing can be stopped simultaneously (True/False)
47. For a 2 x 500 MW unit, number of ash slurry disposal series (ASPS) shall normally be
 a. 2 nos
 b. 3 Nos
 c. 4 Nos
 d. 6 Nos

48. Before first ash slurry disposal pump is started, position of scoop of its fluid coupling should be at maximum (True/False)

49. If the position of scoop of fluid coupling of first ash slurry disposal pump is brought down from maximum to minimum, its oil temperature will
 a. Decrease
 b. Remain constant
 c. Increase

50. Ash slurry disposal series (ASPS) should be run with flushing water for about 10-15 minutes in the beginning (True/False)

51. While shutting down an ash slurry disposal series (ASPS), it needs to be run in flushing mode to clear all the ash that is present in the line (True/False)

52. If dry vacuum evacuation system and dry ash pressure transportation system are to be run simultaneously, then dry ash transportation system from buffer hopper to main silo is to be established first (True/False)

53. Before starting an instrument air compressor which of the following is to be checked
 a. Opening of cooling water main inlet valves, outlet isolation valves of LP and HP cylinder head jackets
 b. Oil level in gear box/crank case and coupling gear box
 c. Opening of compressor discharge valve, air receiver inlet/outlet valves
 d. All the above

54. Heater of ADP(Air Drying Plant) in an instrument air system are normally set at
 a. Switching OFF at 100° C and Switching ON at 80° C
 b. Switching OFF at 98° C and Switching ON at 120° C
 c. Switching OFF at 120° C and Switching ON at 98° C
 d. Switching OFF at 100° C and Switching ON at 40° C

55. TAC (Transport Air Compressor) is to be started at “no load” and loads after about 20 sec (True/false)

56. Before starting a TAC (Transport Air Compressor), its coolers need not be drained through manual drain valves (True/False)

57. Normal pressure of a choke-free Transport Air Pipeline (having no ash flow) is around 0.65 kg/cm2 (True/false)
58. Which of the following is correct sequence during manual LOADING MODE of an air lock vessel

a. Open air lock vessel equalizing valve for about 70 sec, Open air lock vessel ash inlet valve for about 10 sec for filling ash, and then close air lock vessel equalizing valve
b. Open air lock vessel equalizing valve for about 10 sec, Open air lock vessel ash inlet valve for about 70 sec for filling ash, and then close air lock vessel equalizing valve
c. Open air lock vessel ash inlet valve for about 70 sec for filling ash, Open air lock vessel equalizing valve for about 10 sec, and then close air lock vessel equalizing valve
d. Open air lock vessel ash inlet valve for about 10 sec for filling ash, Open air lock vessel equalizing valve for about 70 sec, and then close air lock vessel equalizing valve

59. Which of the following is correct sequence during manual CONVEYING MODE of fly ash

a. Open air lock vessel purging air valve for about 30 sec, Open air lock vessel discharge valve for about 180 sec for discharging ash, and then close air lock vessel purging air valve
b. Open air lock vessel purging air valve for about 180 sec, Open air lock vessel discharge valve for about 30 sec for discharging ash, and then close air lock vessel purging air valve
c. Open air lock vessel discharge valve for about 180 sec for discharging ash, Open air lock vessel purging air valve for about 30 sec, and then close air lock vessel purging air valve
d. Open air lock vessel discharge valve for about 30 sec for discharging ash, Open air lock vessel purging air valve for about 180 sec, and then close air lock vessel purging air valve

60. In the case of a Transport Air Fly Ash Conveying Line running empty with air at 0.65 kg/cm² pressure, the pressure, after opening discharge valve of air lock vessel, may increase to

a. 0.85 kg/cm²
b. 1.00 kg/cm²
c. 2.00 kg/cm²
d. Remain constant

61. Purge timings in a buffer hopper bag filter purging are normally set at

a. 60 sec ON and 500 m sec OFF
b. 60 sec OFF and 500 m sec ON
c. 500 sec ON and 60 m sec OFF
d. 500 sec OFF and 60 m sec ON
62. Shut-off vacuum of a vacuum ash conveying line is normally in the range of
 a. 100 mmHg
 b. 450 mmHg
 c. 200 mmHg
 d. 800 mmHg

63. Each pressure ash conveying line is connected to all the silos, however, one line discharges dry ash in one silo only at a time (True/False)

64. Purpose of Rotary Feeder located below the silo is to control the discharge rate of the dry ash (True/False)

65. Telescopic spout used to load fly ash into closed tankers is surrounded by another flexible spout
 a. To give mechanical strength to the inner spout
 b. To prevent leakage of fly ash into the atmosphere in case the inner spout is punctured
 c. To suck fly ash being flown during loading, with the help of vacuum created between these two spouts by its vent fan
 d. To increase loading capacity of the system

66. Arrange the following activities in sequence for loading fly ash in a closed road tanker placed below silo
 a. Start silo aeration blower and open respective silo aeration valves
 b. Open Pneumatic operated Knife gate Valve (KGV) above rotary feeder
 c. Lower telescopic spout by inching operation through ‘down’ push button provided in the local control panel. Start its vent fan.
 d. Start rotary feeder from local panel

Ans; (a) (c) (d) (b)

67. Once ash level in the tanker reaches high level, it is sensed by tanker level sensor and
 a. ‘stop’ command is first given to close knife gate valve above rotary feeder and then rotary feeder stops after a preset time
 b. ‘stop’ command is first given to rotary feeder and then knife gate valve above rotary feeder closes after a preset time
 c. ‘stop’ command is given for rotary feeder to stop and knife gate valve above rotary feeder to close simultaneously

68. In case ash stored in intermittent silo located in the plant is to be removed in wet form, the suitable option is
 a. By using hydro-ejector/jet pump located on the silo
 b. By using Hydromix Dust Conditioner located on the silo
 c. By using telescopic spout and water spray system located on the silo
69. Badly damaged and worn out impeller of a ash slurry disposal pump shall cause
 a. High vibrations in the pump
 b. Reduced speed of the pump
 c. Reduced discharge pressure of the pump
 d. Leakage of slurry from the pump
70. Suction pipe of a ash slurry disposal pump not being completely filled with water, excessive amount of air or gas in the liquid due to turbulence, Air Pocket / air leaks in suction line, Air leak into pump through stuffing box, Inadequate sump level shall result in
 a. High vibrations in the pump
 b. Reduced speed of the pump
 c. Reduced discharge delivery of the pump
 d. Leakage of slurry from the pump
71. Badly damaged and worn out impeller of a ash slurry disposal pump, increase in concentration of ash in slurry pump shall cause
 a. High vibrations in the pump
 b. Reduced speed of the pump
 c. Sump overflow
 d. Leakage of slurry from the pump
72. Excessive power consumption in a ash slurry disposal pump can be due to
 a. Specific Gravity of the liquid being different from the design value
 b. Misalignment of pump
 c. Bend in shaft or friction between the rotating and the fixed parts
 d. Packing is improperly installed, gland is too tight
 e. Any one or more of the above
73. Short life of bearing in a ash slurry disposal pump can be due to
 a. Misalignment of pump
 b. Bend in shaft or friction between the rotating and the fixed parts
 c. Impeller unbalanced
 d. Lack of greasing
 e. Any one or more of the above
74. Overheating or seizer of a ash slurry disposal pump can be due to
 a. Worn out bearing
 b. Unbalance impeller
 c. Lack of grease
 d. Misalignment
 e. Any one or more of the above
75. In case a clinker grinder is observed to be not operating, it is to be checked for one of the following:
 a. correct seal water pressure
 b. foreign or hard material like refractory
 c. system discharge pressure
 d. All the above

76. In case oil is oozing out through ventilator of a gear box, this can be due to
 a. Overfilled with lubricant oil
 b. Clogged Breather
 c. Any one of the above

77. In case dew point of instrument air is higher, ADP is to be checked for
 a. Contamination of desiccant
 b. Insufficient blower purge rate
 c. Higher inlet temperature
 d. Any one or more of the above

78. In case oil temperature of TAC (Transport Air Compressor) is higher, checking should be done for
 a. Clogged fly ash transport lines
 b. Clogged cooling water lines restricting cooling water flow
 c. High cooling water temperature
 d. (b) and (c) above

79. In case vacuum pump does not develop sufficient vacuum, the reason can be
 a. Less quantity of sealing liquid
 b. High temperature of sealing liquid
 c. Worn out suction cone
 d. Any one or more of the above

80. Monthly Preventive Maintenance of HP pumps includes
 a. CHECKING/REPLACEMENT OF GLAND PACKING
 b. CHECKING/REP. COUPLING, BUSH AND PIN
 c. CHECKING TIGHTNESS OF FOUNDATION BOLTS
 d. CHECKING FREE ROTATION OF PUMP
 e. All the above

81. Monthly Preventive Maintenance of LP pumps does not include
 a. CHECKING/REPLACEMENT OF GLAND PACKING
 b. CHECKING SHAFT SLEEVE
 c. CHECKING HEALTHINESS OF IMPELLER
 d. CHECKING FREE ROTATION OF PUMP

82. Monthly Preventive Maintenance of 1st Stage Ash Slurry Disposal Pump assembly includes
a. CLEANING OF OIL FILTER OF FLUID COUPLING
b. CHECKING OIL LEVEL IN GEAR BOX AND FLUID COUPLING
c. CHECKING FAN OF GEAR BOX
d. CHECKING FREE ROTATION OF GEAR BOX
e. All the above

83. Quarterly Preventive Maintenance of Bottom Ash Overflow Pump includes

 a. CHECKING SHAFT SLEEVE
b. CHECKING OF PULLEY, TAPER LOCK BUSH
c. REGREASING OF BEARINGS
d. CHECKING SUCTION AND DISCHARGE GASKET JOINT
e. All the above

84. Quarterly Preventive Maintenance of Clinker Grinder Assembly includes

 a. CHECKING OF SPROCKET AND CHAIN, CLEANING AND GREASING OF CHAIN
b. CLEANING & GREASING OF BRGS. & SPUR GEARS
c. TOP UP OF GEAR BOX OIL
d. CHECKING ANY OIL LEAKAGE OF FLUID COUPLING
e. All the above

85. Six monthly Preventive Maintenance of Hydro Ejector includes

 a. CHECKING/REPLACEMENT OF NOZZLE, NOZZLE INLET, NOZZLE PLATE ETC.
b. CHECKING/REPLACEMENT OF THROAT, THROAT INCREASER
c. CHECKING/REPL. OF INTERMEDIATE WEAR PIECE
d. All the above

86. Quarterly Preventive Maintenance of Collector Tank does not include

 a. CHECKING OF IMPINGEMENT PLATE
b. CHECKING OF NOZZLE OF WETTING HEAD
c. REPLACEMENT OF VALVES
d. CHECKING/REPL. OF NOZZLE OF AIR WASHER

87. Quarterly Preventive Maintenance of ESP Fluidising Blower includes

 a. CLEAN OF SUCTION FILTER
b. CHECKING COOLING WATER LINE
c. CLEANING OF LOBE
d. All the above

88. Quarterly Preventive Maintenance of Vacuum Pumps does not include
a. CLEANING OF SUCTION STRAINER AND REPLACEMENT OF GASKET
b. CHECKING OF PULLEY AND TAPER LOCK BUSH
c. CHECKING/REPLACEMENT OF GLAND PACKING
d. REPLACEMENT OF CONE

89. Monthly Preventive Maintenance of Hydr Mix Dust Conditioner includes

a. CLEANING AND GREASING OF SPUR GEAR
b. CHECKING/REPLACEMENT OF NOZZLES
c. CHECKING OF PADDLES
d. CLEANING OF STRAINER OF WATER LINE
e. All the above

90. Monthly Preventive Maintenance of Rotary Vane Feeder does not include

a. CHECKING & GREASING OF SPROCKET AND CHAIN
b. CHECKING VANE AND ITS CLEARANCE
c. CHECKING FOR ANY OIL LEAKAGE OF GEAR BOX
d. MEASUREMENT OF FLOW RATE OF FEEDER

91. Quarterly Preventive Maintenance of Filter Bag House includes

a. CLEANING OF FILTER BAGS
b. REPLACEMENT OF DAMAGED FILTER BAG AND CAGE
c. CHECKING LEAKAGE OF AIR FROM PURGING HOSE
d. All the above

92. Power Tariff of Central Generation Companies is fixed by

a. Central Generation Companies themselves
b. Central Electricity Regulatory Commission
c. State Electricity Regulatory Commission
d. State Electricity Distribution Commission

93. The reporting of Operator Ash Handling – Thermal Power Generation to General Manager of the power station is, other than senior CHP executives, through

a. Head of main plant operation
b. Head of main plant Operation and Maintenance
c. Head of main plant maintenance
d. Head of Erection

94. One of the major functions of a Power Generating Company is

a. To generate power from coal based upon its installed capacity
b. To generate power from coal based upon availability of coal
c. To generate power from coal as per requirement of various customers
d. To generate power from coal based upon profitability

95. Every thermal power station must carry a periodical review of pollution levels in the air in surrounding areas (True/False)

96. The main purposes of Electricity Act 2003 are

 a. Creates liberal framework for power development
 b. Creates competitive environment and facilitates private investment
 c. Allows multiple licensing in distribution
 d. All the above

97. Appellate Tribunal board hears appeal against the order of:

 a. District court
 b. High Court
 c. Session Court
 d. CERC and SERC

98. One of the responsibilities of Operator Ash Handling is to make adjustments or minor adjustments, such as tightening leaking gaskets & pipe joints (True/False)

99. In a Government Thermal Power Station, the recruitment for Operator Ash Handling can be done by Head of O&M of a plant (True/False)

Question Bank AHP

Viva and OJT

Questions for Viva

1. What are the job duties and responsibilities of an Operator – Ash Handling ?
2. What is the frequency of doing bottom hopper deashing ?
3. What is the purpose of clinker grinders in bottom ash system ?
4. What are two types of dry ash evacuation systems from ESP hoppers ?
5. What is the actuating system for material handling valve mounted below ESP hoppers ?
6. In case dry fly ash is to be collected in dry form in a vacuum dry fly extraction system, where shall it be diverted to from ESP hoppers?
7. How is the dry ash sticking to bag filters is detached ?
8. What are the stages in pressure conveying system of dry ash ?
9. Whether submerged chain scrapper conveyor system is of intermittent type or continuous type ?
10. What is the pressure of HP pumps used to transport bottom ash through hydro jets?
11. What are the main components of a vacuum type dry ash handling system ?
12. In which type of dry ash conveying system is transport air compressors used ?
13. What is the purpose of fluidizing air ?
14. Which type of trucks are used to carry dry fly ash from silo ?
15. When and where paddle type hydro mix conditioners used ?

Questions for OJT
1. Where is air lock vessel located?
2. How many pumps are there in each ash slurry series? Ans which pump is run through fluid coupling and gear box?
3. What is the use of rotary feeder mounted below dry ash silo?
4. What can be reasons for ash slurry pumps not developing pressure?
5. What can be reasons for clinker grinder having excessive reversal?
6. How many vacuum pumps are installed in each vacuum extraction stream?
7. In case one ash slurry series is running and ash slurry sump is going down, what action shall be taken by the operator?
8. What can be causes of high vibration of clinker grinder?
9. How does bottom ash overflow system help in conservation of water?
10. What are the requirements catered by LP water?